Standardized microfoam for saphenous vein ablation

Nice, France, June 8th 2014

David Wright MB FRCS
VP Medical Affairs, BTG International Ltd
Faculty disclosure

I, David Wright, disclose the following financial relationships:
Employee of BTG International Ltd
BTG is the developer of polidocanol endovenous microfoam, recently approved in the US by the FDA as Varithena™
Principles of PEM treatment of the GSV
Diagnosis, consent and marking

- Duplex ultrasound assessment
 - Deep and all superficial veins
- Plan
 - Agree the plan with the patient
- Pre-procedure
 - Marking to include all veins to be treated
Obtain Venous Access

Choose your spot

Accurate vein targeting

Prove venous access
Injection of Foam to Fill the Trunk Vein

- Fill the GSV or accessory vein towards the SFJ junction
- Stop 3-5 cm before the deep to superficial vein junction
- Compress the junction to stop flow of foam into the deep veins
Treatment of Superficial Varicosities

- From the trunk vein access
- Direct needle stick
- Butterfly needle
Post-Procedure Care

- Regular walking, 10 mins daily for 1 month
- Avoid inactivity, long car or plane journeys for one month
- Ultrasound check at 7 days
- Look for vein closure and thrombus
- Evacuate retained thrombus

- First 48 hours, eccentric compression over treated superficial varices and trunk vein
- Limited stretch bandage
- Compression stockings
- Continue stockings - 2 weeks
- Avoid strenuous for first week
Foams Are Not the Same
Polidocanol Endovenous Microfoam

- Engineered microfoam with consistent physical characteristics and performance
 - Homogeneous
 - Stable
 - Coherent
 - Echogenic
- Safety
 - Median size < 100 µm
 - No bubbles > 500 µm
- Gas mixture
 - 65% oxygen/35% carbon dioxide
 - Low nitrogen content less than 0.8%
- Liquid: gas ratio
 - Defined microfoam density 0.13g/mL
PEM vs. Physician-compounded Foam

All images compare foams within approximately 10 seconds of creation. Photos of physician-compounded foam feature examples of manually created foam made 1:4 with 1% polidocanol solution and room air, Tessari technique. Because of conditions and techniques, properties of physician-compounded foams may vary. RSSL 2014
Foam Bubble Size and Distribution at 40 seconds

- PEM possesses a narrow bubble size distribution with no large bubbles
- PCFs made by Tessari have broader bubble size distributions and large bubbles, which has an impact on stability and safety

BTG data on file
- Establish a foam plug
- Observe the decay
- Linear with time
- Represents stability
- Speed of degradation inversely proportional to the contact time
- Slower degradation rate (DR) equals better foam
Biomimetic Model

100% CO$_2$

Room Air

PEM
(a) PEM has the lowest DR compared to any PCFs, including foams made using room air (RA) \((p<0.035) \)

(b) The same result was obtained at different liquid to gas ratios (1:4 and 1:7 liquid:gas)

100% \(\text{CO}_2 \) foams were least stable in all tests performed and different \(\text{CO}_2:\text{O}_2 \) mixtures had intermediate performance

DSS = Double syringe system
Impact of Nitrogen on Gas Absorption Rates

Foam Gas Absorption Curves

- Nitrogen
- 50:50 N₂:O₂
- 25:75 N₂:O₂
- O₂
- 65%O₂:35%CO₂
- PEM
Air = More Stable Foam
Persistence of Bubbles = Reduced Safety

- Air foam or PEM, 2 injections into the saphenous vein of dog 5 mins apart
- 50% increase in pulmonary artery pressure with air foam
- Persistent bubbles in the pulmonary artery with air foam

Test agents infused at 0 start and 6 minutes (arrows). Values given as mean±SD. For clarity, SD not shown for air-based PD foam (2 x 5 ml) and Varithena™ (2 x 10 ml). PD signifies 1% polidocanol solution.

Butler dog studies. BTG, data on file
Conclusions

- Foams are not the same, impossible to compare clinical results unless characteristics are known and reproducible
- Air foams have good performance but have associated risks, with persistent bubbles in the circulation
- Small bubbles and narrow bubble distribution, with slow drainage and separation times, improves foam performance by enhancing stability
- PEM O$_2$:CO$_2$ low nitrogen gas composition and consistent foam generation is designed to optimize physical characteristics