THE NEXT GENERATION OF FENESTRATED ENDOGRAFTS

Department of Cardiovascular Surgery, Tokyo Women’s Medical University
Takashi Azuma, Yoshihiko Yokoi, and Kenji Yamazaki
Why arch?

TAAs in Japan

root
ascending
arch
descending
thoraco-abdominal
How to fit to stent-graft to the S-curve?
Key features

• Precurved endograft design
• Fenestrations
• Active sealing
• Easy positioning
• Tapered Sheath technology
• Rotation control
• Targeting zone 0 landing
• Stepwise stent-grafting
• Precurved endograft design
• Fenestrations
• Active sealing
• Easy positioning
• Tapered Sheath technology
• Rotation control
• Targeting zone 0 landing
• Stepwise stent-grafting
Precurved endograft design

Support Strut

Proximal Descending

Straight

Twist

Ascending
Key features

• Precurved endograft design
• Fenestrations
• Active sealing
• Easy positioning
• Tapered Sheath technology
• Rotation control
• Targeting zone 0 landing
• Stepwise stent-grafting
Fenestrations
Key features

- Precurved endograft design
- Fenestrations
- **Active sealing**
- Easy positioning
- Tapered Sheath technology
- Rotation control
- Targeting zone 0 landing
- Stepwise stent-grafting
Active sealing
Key features

- Precurved endograft design
- Fenestrations
- Active sealing
- Easy positioning
- Tapered Sheath technology
- Rotation control
- Targeting Zone 0 landing
- Stepwise stent-grafting
Key features

- Precurved endograft design
- Fenestrations
- Active sealing
- Easy positioning
- Tapered Sheath technology
- Rotation control
- Targeting zone 0 landing
- Stepwise stent-grafting
Tapered sheath technology
Key features

- Precurved endograft design
- Fenestrations
- Active sealing
- Easy positioning
- Tapered Sheath technology
- **Rotation control**
- Targeting zone 0 landing
- Stepwise stent-grafting
Rotation control
Key features

• Precurved endograft design
• Fenestrations
• Active sealing
• Easy positioning
• Tapered Sheath technology
• Rotation control
• Targeting zone 0 landing
• Stepwise stent-grafting
“Zone 0” landing
DSA
Key features

• Precurved endograft design
• Fenestrations
• To catch the blood flow for fixation
• Easy positioning
• Tapered Sheath technology
• Rotation control
• Targeting zone 0 landing

• Stepwise stent-grafting
Stepwise stent-grafting
Separate arch into two curves
Stepwise stent-grafting
DSA
<table>
<thead>
<tr>
<th>Patients</th>
<th>393/2yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>sealing length less than 20mm</td>
<td>371 (94%)</td>
</tr>
<tr>
<td>sealing length less than 15mm</td>
<td>224 (56%)</td>
</tr>
<tr>
<td>Male/Female</td>
<td>338/55</td>
</tr>
<tr>
<td>Age</td>
<td>76.1 ± 79.2 yrs.</td>
</tr>
<tr>
<td>Proximal sealing length</td>
<td>14.2 ± 5.1 mm</td>
</tr>
<tr>
<td>Carotid artery Bypass</td>
<td>9</td>
</tr>
</tbody>
</table>
Results

Technical success: 390 (99.2%)
Fluoroscopic time: 26 ± 13 min
30-day mortality rate: 5/390 (1.2%)
Cerebral infarction・TIA: 7 (1.8%)
Type Ia endoleak: 18 (4.5%)
N=244 (LZ<15mm)

<table>
<thead>
<tr>
<th></th>
<th>No Endoleak n=228</th>
<th>Endoleak n=16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal sealing zone length</td>
<td>11 ± 12mm</td>
<td>9 ± 13mm n.p.</td>
</tr>
<tr>
<td>Proximal aortic diameter</td>
<td>34.0 ± 13.3mm</td>
<td>36.6 ± 6.3mm P<0.01</td>
</tr>
<tr>
<td>Maximum length of aneurysm</td>
<td>73 ± 55mm</td>
<td>97 ± 59mm P<0.01</td>
</tr>
</tbody>
</table>
Discussion

More challenging

Easy
Discussion

More challenging

Easy
Summary

• Short term result is excellent
• Reduced fluoroscopic time (26 ± 13 min)
• Promising for precise positioning and absence of migration
• Low incidence of stroke
• Feasible for short proximal neck
Thank you for your attention!