TREATMENT OPTIONS FOR POST DISSECTION AORTIC ANEURYSMS

Stéphan Haulon,
J Sobocinski, T Martin-Gonzalez, R Clough,
R Spear, A Hertault, R Azzaoui

Aortic Center,
Lille University Hospital, France
Disclosures

• Research support, Consulting, IP
 - Cook Medical, GE Healthcare
Surgical Options
OPEN

EMC
Surgical Options
TEVAR
Chronic Dissections

- Proximal and Distal Sealing
- Narrow true lumen
- Target vessels perfused by false lumen
No Compromise on Proximal Seal - Open Surgery
Post Type A Repair
Branched Arch Endograft
Pre-operative CT

2-year control
TEVAR
DISTAL SEAL?
Failure to Remodel in Chronic Dissection

- Perfusion and pressure unchanged in false lumen
- Presence of Intercostals originating from false lumen
- False lumen back flow to Intercostals

Courtesy Tilo Kölbel
TEVAR in Chronic Dissections

TEVAR induces aortic remodeling:
• False lumen thrombosis
• True lumen expansion

But this remodeling is Limited to the DTA along the stentgraft
Distal False Lumen Occlusion in Aortic Dissection With a Homemade Extra-Large Vascular Plug: The Candy-Plug Technique

Tilo Kölbl, MD, PhD; Christina Lohrenz, MD; Arne Kieback, MD; Holger Diener, MD; Eike Sebastian Debus, MD, PhD; and Axel Larena-Avellaneda, MD, PhD
Candy-Plug

Kölbel et al. 2013; J Endovasc Ther 20: 484-9
Fenestrated Distal Extension?
GE Discovery IGS 730
GE DISCOVERY IGS 730
Left Renal Perfused by (2) False Lumen
Staged Approach

- 50 yo patient

- Step 1 (2009): Acute type A dissection with ascending aortic replacement

- Step 2 (2013): Redo sternotomy
 - Tirone David + Arch repair and elephant trunk
TEVAR
Step 3: TEVAR from Elephant Trunk and CT
Step 4
Aorto Bi-Iliac Open Repair

Goal:
Perfusion of
- Both Internal Iliac
- Distal lumbar arteries
Step 5: Fenestrated Endograft
Small tear in front of the right renal
Expansion of true lumen

Post TEVAR

Post FEVAR
Post TEVAR

Post FEVAR
DATA

Table I.—Results of three single centre series of patients with chronic aortic dissections treated with fenestrated/branched endografts.

<table>
<thead>
<tr>
<th></th>
<th>Verhoeven Numberg, Germany 2012</th>
<th>Kitagawa CCF, USA 2013</th>
<th>Haulon Lille, France 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. of patients</td>
<td>6</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Median age (mm - median, range)</td>
<td>62 (44-71)</td>
<td>58 (33-71)</td>
<td>61 (31-77)</td>
</tr>
<tr>
<td>Maximal diameter (mm - median, range)</td>
<td>69 (64-73)</td>
<td>64 (43-97)</td>
<td>67 (56-79)</td>
</tr>
<tr>
<td>Connective tissue disease</td>
<td>NA</td>
<td>6 (40%)</td>
<td>3 (20%)</td>
</tr>
<tr>
<td>Arch involvement</td>
<td>0</td>
<td>1 (7%)</td>
<td>6 (40%)</td>
</tr>
<tr>
<td>Previous aortic surgery (including T-EVAR)</td>
<td>NA</td>
<td>12 (80%)</td>
<td>11 (73%)</td>
</tr>
<tr>
<td>Median nb of fenestrations/branches</td>
<td>3 (0-4)/1 (0-4)</td>
<td>NA</td>
<td>4 (0-4)/2 (0-2)</td>
</tr>
<tr>
<td>Median time elapsed (in months) between acute onset and complex EVAR (median, range)</td>
<td>32 (10-123)</td>
<td>124 (24-408)</td>
<td>48 (12-360)</td>
</tr>
<tr>
<td>Staged procedure (TM only)</td>
<td>NA</td>
<td>78%</td>
<td>45%</td>
</tr>
<tr>
<td>Technical success</td>
<td>100%</td>
<td>NA</td>
<td>100%</td>
</tr>
<tr>
<td>30d-mortality</td>
<td>0</td>
<td>0</td>
<td>1 (7%)</td>
</tr>
<tr>
<td>Reintervention</td>
<td>NA</td>
<td>8 (53%)</td>
<td>2 (13%)</td>
</tr>
<tr>
<td>Mean FU (months)</td>
<td>9 (3-15)</td>
<td>20 (1-62)</td>
<td>12 (1-36)</td>
</tr>
</tbody>
</table>
Early Experience of Endovascular Repair of Post-dissection Aneurysms Involving the Thoraco-abdominal Aorta and the Arch

R. Spear a, J. Sobocinski a, N. Settembre b, M.R. Tyrrell c, S. Malikov b, B. Maurel a, S. Haulon a, *

a Aortic Center, Hôpital Cardiologique, CHRU Lille, France
b Vascular Surgery, CHU Nancy, France
c King’s Health Partners, London, UK

Table 4. Early outcomes.

<table>
<thead>
<tr>
<th></th>
<th>Major adverse events, n (%)</th>
<th>In hospital mortality, n (%)</th>
<th>Spinal cord ischemia, n (%)</th>
<th>Secondary procedures, n (%)</th>
<th>Type 1 endoleak, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic arch aneurysm (n = 7)</td>
<td>2 (28.5)</td>
<td>1 (14)</td>
<td>0 (0)</td>
<td>2 (28.5)</td>
<td>1 (14)</td>
</tr>
<tr>
<td>TAAA (n = 16)</td>
<td>3 (19)</td>
<td>1 (6)a</td>
<td>1 (6)a</td>
<td>0 (0)</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Total (n = 23)</td>
<td>5 (22)</td>
<td>2 (8.7)</td>
<td>1 (4.4)</td>
<td>2 (8.7)</td>
<td>2 (8.7)</td>
</tr>
</tbody>
</table>
CONCLUSIONS

• Simple to very complex
• 3D WS analysis
• No compromise